Force-driven growth of intercellular junctions.
نویسندگان
چکیده
Mechanical force regulates the formation and growth of cell-cell junctions. Cadherin is a prominent homotypic cell adhesion molecule that plays a crucial role in establishment of intercellular adhesion. It is known that the transmitted force through the cadherin-mediated junctions directly correlates with the growth and enlargement of the junctions. In this paper, we propose a physical model for the structural evolution of cell-cell junctions subjected to pulling tractions, using the Bell-Dembo-Bongard thermodynamic model. Cadherins have multiple adhesive states and may establish slip or catch bonds depending on the Ca2+ concentration. We conducted a comparative study between the force-dependent behavior of clusters of slip and catch bonds. The results show that the clusters of catch bonds feature some hallmarks of cell mechanotransduction in response to the pulling traction. This is a passive thermodynamic response and is entirely controlled by the effect of mechanical work of the pulling force on the free energy landscape of the junction.
منابع مشابه
Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels.
Cells in mechanically active environments form extensive, cadherin-mediated intercellular junctions that are important in tissue remodeling and differentiation. Currently, it is unknown whether adherens junctions in connective tissue fibroblasts transmit mechanical signals and coordinate multicellular adaptations to physical forces. We hypothesized that cadherins mediate intercellular mechanotr...
متن کاملROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension.
Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has bee...
متن کاملTight junctions.
Tight junctions are the most apical intercellular junctions of epithelial and endothelial cells and create a regulatable semipermeable diffusion barrier between individual cells. On a cellular level, they form an intramembrane diffusion fence that restricts the intermixing of apical and basolateral membrane components. In addition to these well defined functions, more recent evidence suggests t...
متن کاملFormation of adherens junctions leads to the emergence of a tissue-level tension in epithelial monolayers
Adherens junctions and desmosomes integrate the cytoskeletons of adjacent cells into a mechanical syncitium. In doing so, intercellular junctions endow tissues with the strength needed to withstand the mechanical stresses encountered in normal physiology and to coordinate tension during morphogenesis. Though much is known about the biological mechanisms underlying junction formation, little is ...
متن کاملLocal VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers.
In this study, we present results demonstrating that mechanotransduction by vascular endothelial cadherin (VE-cadherin, also known as CDH5) complexes in endothelial cells triggers local cytoskeletal remodeling, and also activates global signals that alter peripheral intercellular junctions and disrupt cell-cell contacts far from the site of force application. Prior studies have documented the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 421 شماره
صفحات -
تاریخ انتشار 2017